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Optimal Resource Allocation for Multimedia
Applications over Multiaccess Fading Channels

Cong Shen, Student Member, IEEE, and Mihaela van der Schaar, Senior Member, IEEE

Abstract—We study the problem of optimal resource alloca-
tion for multi-user multiaccess wireless video communication
from an information-theoretic point of view. We derive the
optimal resource allocation policies by directly maximizing at
the application layer the weighted sum of video qualities of
all users, subject to information-theoretic multiaccess capacity
region constraints in the MAC-PHY layers. We solve this problem
for three multiaccess capacity regions: 1) non-fading channel,
2) fading channel with a given power control policy, and 3)
fading channel with dynamic power control policies. The optimal
resource allocation policy is referred as Largest Quality Im-
provement Highest Possible Rate (LQIHPR). We propose simple
greedy algorithms to implement this policy. Since the capacity
region is the fundamental characterization of achievable rates,
the solutions developed in this paper provide the operational
upper bound of achievable video quality in a multiaccess fading
channel.

Index Terms—Cross-layer design and optimization, resource
management, multimedia communication, multiuser channels.

I. INTRODUCTION

RECENT research has shown that significant performance
gains can be achieved by resource allocation in wireless

networks. As a result of the time-varying nature of wireless
channels, resource allocation in wireless networks has been
extensively studied, focusing on several different aspects such
as increasing throughput, minimizing delay, improving fair-
ness, etc. In this paper, we focus on studying the resource
(power and rate) allocation problem in a multi-user multimedia
transmission environment. Our work approaches this problem
from two unique perspectives:

1) The ultimate goal of the resource allocation for mul-
timedia users is to maximize their video quality. This
is in contrast with the majority of existing research on
resource allocation, which focuses on the interaction
among PHY, MAC and Network layers. The existing
results for resource allocation have the advantage that
they are simple and transparent to high layers. However,
since they only consider the lower layers, they are not
optimal from a video quality perspective.
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2) The constraint of the resource allocation is the through-
put capacity region defined at the PHY/MAC layers.
In contrast, most application layer research studies the
resource allocation problem by considering either cer-
tain specific PHY/MAC schemes (e.g., IEEE 802.11
PHY) or some approximate relationship between resource
and error probability. The advantages of considering
an information-theoretic constraint at lower layers are
two fold. First, the capacity region is an upper bound
for the achievable rates where error-free transmission is
possible. Since the capacity region is the fundamental
characterization of the achievable rates, resource alloca-
tion with the capacity region constraint actually gives the
achievable video quality region, which is the upper bound
of achievable video quality. Second, using capacity region
instead of any specific PHY/MAC scheme is more robust
in the sense that the derived solution is insensitive to
what specific scheme is actually used. Thus, the proposed
policy can be adopted by a wide range of applications.

The existing literature on multi-user resource allocation has
mainly focused on addressing the aforementioned two aspects
in isolation. For instance, there are information-theoretic stud-
ies characterizing the throughput at the PHY/MAC. The entire
throughput capacity region of a multiaccess fading channel
is explicitly characterized in [1], [2]. Then the results are
generalized to broadcast fading channels in [3]. It is generally
believed that weighted-sum-rate-maximizing (WSRM) is the
optimal operating point of the system. There are also studies
addressing fairness [4], scheduling [5] and QoS [6]. In the
video resource allocation problem, for example, a lot of
research is devoted to studing the problem with specific lower
layer schemes, e.g., IEEE 802.11 wireless LAN [7] or some
given adaptive techniques [8].

In this paper, we will first show that the previous
information-theoretic results which maximize the weighted
sum rate of all users are suboptimal from the video perfor-
mance perspective. We proceed to develop optimal resource
allocation policies for several different models. We adopt op-
erational video Quality-Rate (Q-R) models, in which the video
quality is a strictly concave function of the transmission rate.
For wireless communication of the video data, we consider
three multiaccess capacity regions, each corresponding to a
different type of channels:

a) Non-fading AWGN channel, and fading channel with
a given power control policy. The capacity regions of
both these channels exhibit the polymatroid structure,
and we propose the resource allocation scheme that
maximizes the weighted sum of video qualities of all
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users for any rates inside the corresponding multiaccess
capacity region. We name the optimal policy Largest
Quality Improvement Highest Possible Rate (LQIHPR).
This policy has a low-complexity greedy algorithm: trans-
mit an incrementally larger amount of video bits/packets
until the capacity region constraint is tight. We further
generalize LQIHPR to various video Q-R models. We
prove the optimality of the generalized LQIHPR, and pro-
vide a “horizontal water-filling” greedy implementation
algorithm. Numerical examples are shown to demonstrate
the efficiency of the proposed algorithm.

b) Fading channel with dynamic power control policy. As
shown in [2], the capacity is increased (due to the
dynamic power allocation) compared to the transmission
scenario in a). The optimal resource allocation solution
is obtained by a “divide and conquer” strategy: divide
the entire throughput capacity region into sub-regions
and apply an modification to the Tse-Hanly solution
[2]. We provide a low-complexity method to construct
the candidate intervals in which the modified Tse-Hanly
solution is applied. Since this “divide and conquer”
solution is only a theoretical upper bound instead of an
implementable algorithm, we do not provide numerical
examples, but the optimality of the proposed solution is
rigourously proved.

Our work differs from the previous information-theoretic
studies, where the target is to determine the highest possible
transmission rate that the physical channel can support given a
power budget. Thus, it aims at determining the capacity region,
without considering its usage for multimedia users. Our work,
however, is devoted to answering the following question:
For a given set of resources (power and rates), how should
they be optimally allocated among multiple video users? The
multiaccess capacity region only provides the constraint, i.e.,
it only tells us how many resources we have, but it does not
determine how to optimally allocate the available resources
among the users. Our proposed solution explicitly considers
the operational rate-quality performance of the deployed video
coders and, based on this, determines the optimal allocation
according to a predetermined performance metric.

The rest of this paper is organized as follows. Section II
defines the system model, briefly discusses previous results,
and formulates the problem. Section III presents the LQIHPR
policy together with a low-complexity greedy algorithm for
non-fading channel and fading channel with any given power
control policy. For dynamic power and rate allocation, the
optimal policy is derived in Section IV. Finally, Section V
concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Channel Model

We adopt the same channel model as in [2]. Specifically,
we consider an I-user Gaussian multiaccess fading channel
with bandwidth W . The discrete-time channel model used in
this paper is

Y (n) =
I∑

i=1

√
Hi(n)Xi(n) + W (n) (1)

where Xi(n) and Hi(n) are the transmitted symbol and the
flat-fading process of user i at time n, respectively. W (n) is
the receiver additive white Gaussian noise (AWGN) with vari-
ance N0/2 per dimension. Each user i is subjected to a long-
term average power constraint: E[|Xi(n)|2] ≤ P̄i. A power
allocation policy is called feasible if it satisfies this constraint.
The time-varying fading processes {Hi(n), i = 1, · · · , I}
are assumed to be jointly stationary and ergodic, and the
channel coherent time is sufficiently large such that Hi can
be considered constant over a long block length. We assume
that the fading processes of different users are independent of
each other.

B. Capacity Regions and the WSRM Policy

As in [2], we consider the case where both the receiver
and the transmitters know CSI perfectly. Resource allocation
is done by a central controller at the access point which takes
the joint fading state h as an input, and outputs the power
allocation P(h) = (P1(h), · · · , PI(h)) and rate allocation
R(h) = (r1(h), · · · , rI(h)).

In this paper, the following three multiaccess capacity
regions are considered.

1) For the Gaussian non-fading multiaccess channel h with
constant transmit power P, the capacity region is well
known [9] to be

Cg (h,P) = {r : r(S) ≤ CS (h,P) , ∀S ⊆ {1, · · · , I}}
(2)

where CS (h,P) � W log
(
1 +

∑
i∈S hiPi

N0W

)
, and r(S) is

used to denote
∑

i∈S r(i) throughout this paper.
2) For the time-varying Gaussian multiaccess fading channel

and a given feasible power allocation policy P(H), the
capacity region has been proved [10] to be

Cf (P) = {r : r(S) ≤ EH [CS (H,P(H))] ,
∀S ⊆ {1, · · · , I}}. (3)

Both (2) and (3) exhibit the polymatroid structure [2].
As will be discussed later, this leads to the same type of
optimal rate allocation policies. For the sake of notation,
(2) (3) are referred as polymatroid-type regions.

3) For the time-varying Gaussian multiaccess fading channel
with dynamic power allocation, the capacity region is
shown to be

C
(
P̄

)
=

⋃
P∈F

Cf (P) (4)

where F is the set of all feasible power allocation
policies. This capacity region has been explicitly char-
acterized in [2]. We refer to the capacity region (4) as a
convex-type region.

From an information-theoretic viewpoint, it is generally of
interest to maximize the weighted sum rate of users [1], [2]

maximize
r

μT r

subject to r ∈ C
(5)

where r is the rate vector, and μ is the nonnegative weight
vector with

∑I
i=1 μi = I . Solutions to problem (5) have

been derived for the capacity regions Cg (h,P), Cf (P),
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and C
(
P̄

)
. Details can be found in [2] and the references

therein. Such solutions are generally believed to be the optimal
operating point of the system. We refer to the general solution
to (5) as the Weighted-Sum-Rate-Maximizing (WSRM) policy.

C. Quality-Rate Models

Operational Q-R models [11], [12] describe the achievable
quality of a specific video coder (e.g., H.264/AVC, MPEG-
2, MPEG-4 or a 3D wavelet video coder) as a function of
the allocated rate. We use the widely accepted Peak Signal-
to-Noise Ratio (PSNR) as a measure of video quality. The
operational Q-R model adopted in this work is also a widely
used one [11] where for user i we use Ni line segments with
slopes λ

(k)
i , k = 1, 2, · · · , Ni, each of which corresponds to a

rate interval Δ(k)
i :

Qi(ri) =

{
0, ri < rmin

i

q
(k)
i + λ

(k)
i

(
ri − r

(k)
i

)
, ri ∈ Δ(k)

i , 1 ≤ k ≤ Ni

(6)
where (r(k)

i , q
(k)
i ), k > 1 is the connection point of two

line segments, and (r(1)
i , q

(1)
i ) = (rmin

i , qmin
i ) represents

the minimum rate-quality requirement. This is based on the
observation that below this point, the transmission results
in unacceptable video quality and hence, a user that cannot
obtain his minimum quality will not participate in the wireless
transmission. It is a well known result (see e.g. [11]) that
λk ≥ λk+1, i.e., the quality benefit derived by an operational
video coder decreases with an increased allocated source rate.

In practical video coders, the Q-R model is generally
discrete. Our work mainly focuses on the Q-R model with
fine granularity. In this case, the continuity of Q-R model
can be considered as an ideal case, because how continu-
ous/discrete the Q-R model is depends on the granularity of
the video packets. As the granularity of the video packets
becomes finer, the overall Q-R function becomes less discrete.
Also, the practical discreteness only degrades the performance
compared to the continuous case. However, for the highly
discrete models, the continuous relaxation might lead to severe
performance degradation. In this case the proposed method is
not applicable, and one has to resort to numerical discrete
optimizations.

D. The Weighted-Sum-Quality-Maximizing Policy

Multimedia transmission applications aim at directly opti-
mizing the APP layer utility (i.e., video quality). Thus, the
focus of this paper is on how to allocate the resources (power
and rate) to different users such that the weighted sum of video
qualities is maximized. This can be formally cast as

maximize
r

∑I
i=1 wiQi(ri)

subject to r ∈ C
(7)

where wi ≥ 0 and
∑I

i=1 wi = I . The weights wi, i = 1, · · · , I
are used as an adjustment from system consideration, e.g., to
deal with the asymmetric channel conditions of different users,
or to implement some fairness control. We will refer to the
solution to this general optimization problem as the Weighted-
Sum-Quality-Maximizing (WSQM) policy. In this paper, we

focus on the wireless multiaccess fading channel, and derive
the WSQM policies for

1) Q(r) using line-segment model (6), or any other R-D
models with packets prioritization mechanism;

2) C equal to Cg (h,P), Cf (P), and C
(
P̄

)
, respectively.

Note that the aforementioned WSRM solution is generally
suboptimal for video applications. This is because even if two
users are assigned the same rate, their video quality might
differ significantly, due to the nonlinear relationship between
video quality and rate. This is the motivation for WSQM.

III. OPTIMAL RESOURCE ALLOCATION FOR

POLYMATROID-TYPE CAPACITY REGIONS

We first study problem (7) where C = Cg (h,P) or C =
Cf (P). Both capacity regions have a polymatroid structure,
and thus they will have similar solutions, as will be evident in
this section. For the sake of notation simplification, we only
use Cg (h,P) in the following derivation, i.e., we will solve

maximize
r

∑I
i=1 wiQi (ri)

subject to r ∈ Cg (h,P)
(8)

in this section. It should be noted the same method can be
applied to Cf (P) without any modification.

A. Largest Quality Improvement Highest Possible Rate

First, we need to determine in which area of the multiaccess
capacity region the optimal solution is. For this, we cite the
definition of boundary surface from [2, Definition 3.9].

Definition 1: The boundary surface of the multiaccess ca-
pacity region Cg (h,P) (or Cf (P), C

(
P̄

)
) is the set of

rates such that no component can be increased with the other
components remaining fixed while in the capacity region.
For example, in a two-user scenario, the boundary surface of
Cg (h,P) is given by the line segment {(r1, r2) : r1 + r2 =
C{1,2} (h,P) , ri ≤ C{i} (hi, Pi) , i = 1, 2}.

The following theorem gives the possible locations of
the optimal operating point within the general multiaccess
capacity region C.

Theorem 1: The solution to (7) must be at the boundary
surface of the multiaccess capacity region C.

Proof: Due to the fact that the Q-R function is mono-
tonically nondecreasing and according to the definition of
boundary surface, the proof directly comes from the Pareto
Optimality [13].

The remaining problem is how to find the operating point
at the boundary surface. We propose a low-complexity greedy
algorithm to solve this problem. First, we can incorporate the
weight wi into the slopes of each user’s Q-R function. Thus,
without loss of generality we assume all wi to be equal to 1
for the remaining of this paper. Second, we assume throughout
this paper that each user has an individual rate limit which
is larger than the minimum rate required in its Q-R model:
C{i} (h,P) > rmin

i . This is reasonable because otherwise we
can always allocate zero rate to the user and exclude him from
the following algorithms. We also assume that the users who
participate in the resource allocation have their rates and video
PSNRs in similar ranges. This can be done by setting some
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threshold and excluding disqualified users. The reason for this
assumption is to avoid extreme situations such as one user’s
rate range is much higher than the others, or his video PSNRs
are much lower.

Algorithm 1 is the proposed solution to problem (8). We
name it Largest Quality Improvement Highest Possible Rate
(LQIHPR), as we always increase the rate of the user who has
the steepest quality improvement. The proof of the optimality
of Algorithm 1 is deferred to Section III-B, where we prove
a more general result. The complexity is roughly linear in
the number of active users, depending on the number of rate
intervals in the Q-R models.

Algorithm 1 I-User Greedy Rate Allocation Algorithm for
Line-segment Q-R Models

Input: Cg (h,P) (2); User i’s Q-R model (6) with

slope set
{

λ
(1)
i , λ

(2)
i , · · · , λ

(Ni)
i

}
and rate interval set{

Δ(1)
i , Δ(2)

i , · · · , Δ(Ni)
i

}
, i = 1, · · · , I .

Initialization: Sort the slopes from all users{
λ

(1)
i , λ

(2)
i , · · · , λ

(Ni)
i

}I

i=1
in descent order and form the

ordered slope set Λorder =
{
· · · ≥ λ

(kj1 )

j1
≥ λ

(kj2 )

j2
≥ · · ·

}
with the corresponding rate interval set Δorder ={
· · · , Δ(kj1 )

j1
, Δ(kj2 )

j2
, · · ·

}
; Allocate user i with an initial

rate ri = rmin
i , i = 1, · · · , I .

Repeat:

1) Select the first available slope λ
(k)
j from the ordered

slope set Λorder, and determine the corresponding user
j;

2) Increase the rate rj of user j until the rate interval Δ(k)
j

is fulfilled, or any rate limit is reached;
3) Delete λ

(k)
j / Δ(k)

j from sets Λorder / Δorder. In case
that any rate limit is reached, delete all remaining
slopes/rate intervals associated with the corresponding
user(s) from sets Λorder / Δorder.

Until: Λorder / Δorder is empty, or the overall I-user sum
rate limit is reached.

Return: r∗ = (r1, · · · , rI).

Now we try to illustrate this algorithm using a two-user
case. From Theorem 1, the solution to

maximize
r1,r2

Q1(r1) + Q2(r2)

subject to r ∈ Cg (h,P)

must lie in the line segment {(r1, r2) : r1 + r2 =
C{1,2} (h,P) , ri ≤ C{i} (hi, Pi) , i = 1, 2}. By noticing that
the slopes of each user’s Q-R model are monotonically de-
creasing as its rate increases, a typical ordered slope set Λorder

could be Λorder =
{
λ

(1)
1 ≥ λ

(1)
2 ≥ λ

(2)
2 ≥ λ

(2)
1 ≥ · · ·

}
,

and the associated rate interval set is Δorder ={
Δ(1)

1 , Δ(1)
2 , Δ(2)

2 , Δ(2)
1 , · · ·

}
.

Fig. 1 gives two examples showing how the greedy rate
allocation is performed based on the scenario described in the
previous paragraph. Rate is allocated to users according to
their slopes’ ordering. In Fig. 1 (a), user 1 and 2 increase
their rate in the order of 1, 2, 2, 1, 2 until user 1 first stops

at its individual maximum rate CMAX({1}), and then user 2
continues being allocated more rate until the maximum sum
rate limit CMAX({1, 2}) is reached. The example in Fig. 1
(b) shows another possibility that neither user’s individual
rate limit is reached, but the sum rate limit CMAX({1, 2})
is met. In this situation the optimal operating point is not
at any extreme point but strictly inside the line segment.
Again this demonstrates that the conventional WSRM policy
which operates at one extreme point is suboptimal for video
allocation.

Since LQIHPR and WSRM generally operate at different
points in the boundary surface, the methods to achieve them
are also different. As we have mentioned before, to maximize
the weighted sum rate one has to operate at a specific extreme
point of the capacity region, and successive decoding is suf-
ficient to achieve the corresponding rate pair. In LQIHPR we
generally operate within the boundary surface, which means
time sharing is necessary1.

B. LQIHPR for General Q-R Models

At this moment it seems that the optimality of the proposed
LQIHPR policy relies on the line-segment Q-R model (6).
However, we argue that the optimality is not depending on
any specific Q-R model being used. Instead, LQIHPR can be
proved to be optimal for any utility-rate model that is mono-
tonically increasing and strictly concave. In this subsection,
we will prove that LQIHPR is optimal for such a broad class
of Q-R models.

To be more specific, let us look at problem (8) from a
different perspective. We do not consider any specific Q-R
model Q(r). Instead, we make two reasonable assumptions
about Q(r):

1) function Q(r) is continuously differentiable, or has a
finite set of nondifferentiable points, and thus it has a
first-order derivative function f(r) � dQ(r)/dr which
has at most finite discontinuous points.

2) the derivative function f(r) is nonincreasing.

The first assumption holds for state-of-the-art video coders
designed for wireless streaming applications (e.g., H.264,
MPEG-4 Fine Granularity Scalability (FGS) and wavelet
based video coders), as they need to provide the ability to
efficiently adapt to dynamic changes in the channel conditions
[15, Chapter 4]. Hence, they have the ability to gracefully
increase the received video quality for every small increase in
source rate by successively refining the source information.
This is implemented in MPEG-4 FGS and wavelet video
coders using embedded quantization and in H.264 using
flexible data partitioning. The second assumption has been
justified in [11].

With these two assumptions, Q(r), r ≥ rmin can be written
as

Q(r) =
∫ r

rmin

f(z)dz

1In general there are other ways to achieve points strictly inside the
boundary surface other than time-sharing, e.g., the rate-splitting approach [14].
Here the terminology “time sharing” is used in a more general sense.
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(1)
1λ

( 2)
1λ

(3)
1λ

( 4)
1λ

( 2)
2λ

(1)
2λ

(3)
2λ

( 4)
2λ

(5)
2λ

min,2r min,1r ({1} )MAXC ({2})MAXC ({1, 2})MAXC

(1)
1λ

(1)
2λ

( 2)
2λ

( 2)
1λ

(3)
2λ

(3)
1λ

( 4)
1λ

( 4)
2λ

(5)
2λ

1 2 3 4 5(QUIT) 4 4 X X

(a) Individual rate limit is reached.

(1)
1λ

( 2)
1λ

(3)
1λ

( 4)
1λ

( 2)
2λ

(1)
2λ

(3)
2λ

( 4)
2λ

(5)
2λ

min,2r min,1r ({1} )MAXC ({2})MAXC ({1, 2} )MAXC

(1)
1λ

(1)
2λ

( 2)
2λ

( 2)
1λ

(3)
2λ

(3)
1λ

( 4)
1λ

( 4)
2λ

(5)
2λ

1 2 3 4 5(QUIT) X X X X

(b) Sum rate limit is reached.

Fig. 1. Two examples illustrating Algorithm 1. In the table below each plot, the first row shows the slope ordering, and the second row indicates the deletion
ordering as in repeat step 3) of Algorithm 1. Here CMAX (S) means the sum rate constraint for the entire set S is tight.

and problem (8) is equivalent to

maximize
r

∑I
i=1

∫ ri

rmin
i

fi(z)dz

subject to r ∈ Cg (h,P) .

Thus, problem (8) can be reinterpreted as maximizing the sum
area under each fi(z) subject to the rate constraints. With
this interpretation, we can explain why LQIHPR is always
optimal as long as Q(r) used in problem (8) satisfies the
two assumptions, using a quality-splitting approach which is
similar to the rate-splitting explanation in [2]. Let us define
fi(z) as the marginal quality function for user i, and fi(z)dz
can be interpreted as the marginal increase in video quality of
user i due to allocating rate dz to user i at the rate level z.
Then at the rate level z, the optimal solution can be obtained
by always allocating rate dz to the users where it leads to the
maximum marginal increase in video quality. Fig. 2 shows a
three-user example. Details of this example will be explained
later. In summary, we give the LQIHPR algorithm for general
Q-R models in Algorithm 2.

Theorem 2: Algorithm 2 gives the optimal solution to prob-
lem (8).

Proof: See Appendix A.
Algorithm 2, similar to Algorithm 1, is a LQIHPR solution:

rate is always given to the user(s) for which it leads to the
maximum quality increase. We further point out that this
is conceptually a “horizontal water-filling” process. We will
explain this idea using the three-user example in Fig. 2.
Initially each user is assigned with the minimal rate rmin

i .
A horizontal water-filling starts from point A since that is the
highest position among all fi(ri)’s. Water horizontally (from
left to right) fills in the vessel under f2(r) until it hits the level
of the second highest point B. Then besides filling the vessel
under f2(r), water also pours into the vessel under f1(r) and
thus it will simultaneously fill in both vessels. Similarly it
continues until water level C is reached, where user 3 is added
into this horizontal water-filling process. Then when water

Sum rate of
all users reached

A

B

C

D

F E

Individual rate limit of user 2 reached

rmin
1

v1

v3

f(r)

r

f1(r)

f2(r)

f3(r)

r∗2

rmin
3 rmin

2

r∗3 r∗1

v2

Fig. 2. A three-user example illustrating the LQIHPR rate allocation
algorithm for general Q-R models.

comes to level D where user 2’s individual limit is reached,
water-filling for user 2 stops. Remaining user 1 and 3 continue
filling water until the maximum limit for all users is met, and
they stop at water level E/F.

It is important to emphasize that there are both con-
nections and important differences between the “horizontal
water-filling” algorithm here and the conventional multi-user
water-filling solution in [1], [2]. The connection is that both
solutions have a similar flavor: always allocate rate to those
who have the steepest ascent of the objective function. The
differences are multifold. First of all, in our problem setting
we are actually doing water-filling in the utility domain,
where the objective functions are concave in rates, while
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Algorithm 2 I-User Greedy Rate Allocation Algorithm for
General Q-R Models
Input: Cg (h,P) (2); User i’s Q-R model Qi(ri) which must

be a continuous (or has a finite set of discontinuous points)
function with nonincreasing derivatives, i = 1, · · · , I .

Initialization:
1) Allocate user i with an initial rate ri = rmin

i .
2) Calculate the derivative function fi(r) = dQ(r)

dr .
3) Calculate vi = fi(rmin

i ), i = 1, · · · , I and form an
ordered set of vi: {vi1 ≥ · · · ≥ viI}. Form active user
set Ua = {i1}, active user rate set Ra = {ri1}, and
active marginal quality set Fa = {fi1(ri1 )}.

4) k = 1.

Repeat:
Simultaneously increase all the rates in Ra until
a) a subset Us ⊂ Ua saturates their sum rate limit r (Us) =
CMAX (Us). Then denote Rs, Fs as the active rate and
marginal quality set corresponding to Us, respectively, and

if Us = {1, · · · , I} then
exit loop.

else
remove Us from Ua, Rs from Ra, Fs from Fa, and

continue increasing the rates of users in Ua.
end if

b) fi1(ri1 ) = · · · = fik
(rik

) = vik+1 . Then
add ik+1 into Ua, rik+1 into Ra, and fik+1(rik+1 ) into

Fa. k = k + 1.
Return: r∗ = (r1, · · · , rI).

the conventional information-theoretic water-filling is in the
rate domain with linear objective functions. Our solution is
more general than the conventional one, since one can always
view linearity as a special case of concavity. Secondly, the
“greedy” behavior in our water-filling solution is different
than in the conventional one. In multi-user water-filling, the
greedy algorithm is strongly competitive: it picks up the largest
marginal utility function at each interference level N0 + z. In
other words, each time there is at most one user being chosen.
However, in our solution, the greedy behavior is collaborative:
we look at the marginal utility functions of all users all the
time, and multiple users can be chosen simultaneously, as long
as they have the same steepest ascent.

As we have stated at the beginning of this subsection, the
specific Q-R model is not fundamental in deriving the optimal
solution. To better understand this, it would be interesting to
see how Algorithm 1 can be regarded as a special case of
Algorithm 2. Fig. 3 illustrates the corresponding line-segment
Q-R model for the same three-user example as in Fig. 2.
According to Algorithm 2, since level A is the highest one, we
will first increase the rate of user 2 until level A drops to level
E. Then the second highest level B will make the rate of user
1 increase, and then the third highest level C makes the rate
of user 1 further increase, and then level D for user 3, and
so on. This is actually equivalent to Algorithm 1. However
there are some differences between these two algorithms. For
a line-segment model, the water level keeps constant inside
one rate interval, and changes dramatically at the edge, which

F

A
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C
D E

rmin
2rmin

1

f(r)

r

f2(r)

f1(r)

f3(r)

rmin
3

Fig. 3. Illustration of how Algorithm 1 is a special case of Algorithm 2 with
the same three-user example as in Fig. 2.

is a nondifferentiable point in Q(r). This makes the water
filling generally only pour into one user’s vessel at a time, and
change to another user at the edge. The general Q-R model,
on the other hand, has a gradually changing shape, and thus
water can pour into several users simultaneously, in a gradual
fashion.

The key reason that makes the LQIHPR policy optimal
is the monotonically decreasing slope property of the Q-
R model. Due to prioritizing bits/packets according to their
descent impact on the overall video quality, the increase of
quality will become smaller as the rate increases [11]. This
directly translates to an ever-decreasing slope in the Q-R
function. It is important to notice that all the video coders for
wireless video applications designed so far generate a Q-R
function with decreasing slopes by bits/packets prioritization,
and thus the optimality of LQIHPR is universal to all video
coding schemes. For more information on various prioritiza-
tion schemes for hybrid video coders and wavelet coders, the
reader is referred to [16] and [17], respectively.

C. Numerical Examples

We have theoretically demonstrated the optimality of the
proposed LQIHPR (WSQM) in terms of maximizing video
quality-rate functions. In this section, we provide several sets
of simulation results to access the performance difference
between LQIHPR and WSRM policies. It is notable that
the WSRM policy does not have access to the quality-rate
information, and thus is certainly sub-optimal in terms of
video quality. However, the numerical comparison made in this
section helps quantify how much gain we can get by perform-
ing the resource allocation based on knowing the quality-rate
model, and especially when significant improvement in video
quality may be achieved.

We provide five sets of simulations, considering different
channel conditions, different number of users/videos, and
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different delay constraints on video coders. In the first four
sets of simulations, we assume that user 1 wants to trans-
mit the Mobile video, user 2 has the Coastguard video for
transmission, and user 3 transmits Stefan. The videos used
throughout all simulations are standard ones in the video
coding community. H.264/AVC encoder is used throughout
all simulations to compress the videos with the following
parameters: one B-frame, GOP size 16 video frames, max-
imum 2 reference frames for motion compensation/estimation
(previous I-frames or P-frames), worst end-to-end delay 66
ms, and CIF resolution 30 Hz. Line-segment Q-R model (6)
is used throughout all simulations, where the average PSNR
reported for the Y channel from the H.264/AVC encoder is
used. In the line-segment Q-R model, there is not only a
minimum rate constraint, but also a maximum rate limit. These
limits are summarized in Table I. Thus if the rate assigned to
one user is larger than the upper limit, the quality will stop
increasing. LQIHPR is implemented with all weights equal
to 1 and compared with WSRM. As we have proved, each
extreme point of the multiaccess capacity region is an optimal
solution of WSRM for certain weights. We simply choose one
out of all the I! extreme points which gives the largest sum
of video qualities. Notice that this is the highest sum video
quality WSRM can provide.

We first consider a two-user Rayleigh fading symmetric
multiaccess channel with average channel power (Table II).
Each user is assumed to have an average receive SNR of 10
dB and bandwidth 1 MHz. This bandwidth is used throughout
this section. Simulation shows that the LQIHPR policy, which
aims at maximizing the sum quality, has an average sum PSNR
of 71.8 dB, while the WSRM policy only provides 69.3 dB:
there is an approximately 2.5 dB average quality gain in this
simulation setting. It is interesting to explore how the WSRM
policy results in such a suboptimal video performance. WSRM
always operates at one extreme point, where only one user gets
its maximum rate, and thus its best possible video quality.
However, this ”selfish” allocation leaves very small room for
the other user to increase its quality. Heuristically, if the first
user can give some rate to the second one without decreasing
the sum rate, he might experience very limited quality drop,
but at the same time the video quality of the second user
might increase significantly due to the nonlinear relationship
between rate and quality, and thus the sum of video qualities
can be increased.

The second simulation has the same environment as the first
one, except that the channels are asymmetric (Table II). We
assume that user 1 has an average SNR of 10 dB, while user
2 has 15 dB. This models the situation where one user has a
better channel than the other. In this simulation, WSRM gives
an average PSNR of 66.5 dB, and LQIHPR provides 73.9 dB.
There is a 7.4 dB performance difference. It can be noted that
in this asymmetric situation the benefit of LQIHPR is even
larger, which can be explained as following. The fact that user
2 has higher receive SNR means user 2 will typically have a
better channel than user 1. Translating into the multiaccess
capacity region, the rate of user 2 is much larger than that
of user 1 at the boundary surface. In this region, typically
the video quality of user 2 has already saturated, while user
1 may operate around its minimum rate-quality point such

that its video quality can be significantly improved by a very
small rate increase. In other words, the same rate is much
more important to user 1 than to user 2 in terms of video
quality. WSRM operates at the extreme point where the rate
of user 2 is maximized, while LQIHPR, by noticing the fact
that rate is more important to user 1 than to user 2, decreases
the rate of user 2 and allocates it to user 1, and maximizes
the sum of video qualities.

From these simulations results we can conclude under what
conditions the resource allocation gain will be large. Typically
this happens when one user is operating at the ”saturation
regime” while another user is at the ”survival regime”. In such
case significant performance gain can be achieved if the first
user gives some of his rate to the second user such that without
degrading his performance much, the second user can benefit
significantly. On the other hand, the resource allocation gain
can be very limited if both users are at the ”saturation regime”,
where video qualities are insensitive to small rate changes.

The third and fourth simulations include three users (Ta-
ble III). In the third simulation we simulate a Rayleigh fading
symmetric multiaccess channel, with the same parameters as
in the first simulation. LQIHPR results in an average sum
PSNR of 105.8 dB, while WSRM gives 104.1 dB. The last
simulation includes a three user asymmetric Rayleigh fading
multiaccess channel. User 1 has an average receive SNR 15
dB, while user 2 and 3 have 18 and 13 dB, respectively.
The other parameters are the same as before. In this setting
LQIHPR gives an average sum PSNR 111.5 dB, compared
with 107.1 dB from WSRM. The conclusions from these three-
user simulations comply with those two-user examples.

The last simulation is developed to deal with delay con-
straint and its impact on the resource allocation policy. In this
simulation, both user 1 and user 2 want to transmit the Akiyo
video to a central receiver. However, the H.264/AVC encoder
generates different GOP structures to meet with the different
worst-case end-to-end delay constraints of each user. User 1’s
worst-case end-to-end delay is 99 ms, while user 2’s is 165
ms. The bandwidth is set to be 160 KHz, as the Akiyo video
has very slow movement, and thus the required transmission
rate is smaller than those three previous videos. The other
parameters are the same as the previous four simulations. The
results are reported in Table IV. It is clear that by properly
modeling different delay constraints, the proposed LQIHPR is
still efficient in terms of maximizing the video quality. As we
have emphasized in Section III-B, as long as the quality-rate
model satisfies the two mild assumptions, the LQIHPR policy
is proved to be optimal.

IV. OPTIMAL RESOURCE ALLOCATION FOR THE

CONVEX-TYPE CAPACITY REGION

A. Problem Formulation

We have studied the problem that for any feasible power
control policy P(H) that is given a priori, how to allocate
the rate inside the resulting multiaccess capacity region to
different users such that the weighted sum of video quali-
ties is maximized. This problem setting, although has some
implementation advantages such as low complexity due to a
non-dynamic power allocation policy, does not make full use
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TABLE I
MINIMUM AND MAXIMUM RATE/PSNR LIMITS. PSNR IN DB AND RATE IN MBPS.

minimum rate minimum PSNR maximum rate maximum PSNR
Mobile 0.60 28.3 3.30 38.1

Coastguard 0.22 28.1 2.50 37.8
Stefan 0.39 29.8 2.34 39.3

TABLE II
SIMULATION RESULTS FOR TWO-USER FADING MULTIACCESS CHANNELS. PSNR IN DB AND RATE IN MBPS.

Policy sum PSNR PSNR 1 PSNR 2 sum rate rate 1 rate 2

Symmetric MAC LQIHPR 71.8 34.5 37.3 4.06 1.92 2.14
WSRM 69.3 31.5 37.8 4.06 1.14 2.92

Asymmetric MAC
LQIHPR 73.9 36.1 37.8 5.00 2.50 2.50
WSRM 66.5 28.7 37.8 5.00 0.66 4.34

TABLE III
SIMULATION RESULTS FOR THREE-USER FADING MULTIACCESS CHANNELS. PSNR IN DB AND RATE IN MBPS.

Policy sum PSNR PSNR 1 PSNR 2 PSNR 3 sum rate rate 1 rate 2 rate 3

Symmetric MAC LQIHPR 105.8 34.5 34.6 36.7 4.72 1.92 1.26 1.54
WSRM 104.1 37.1 31.8 35.2 4.72 2.90 0.66 1.16

Asymmetric MAC LQIHPR 111.5 34.5 37.7 39.3 6.57 1.92 2.31 2.34
WSRM 107.1 33.4 34.4 39.3 6.57 1.60 1.23 3.74

TABLE IV
SIMULATION RESULTS FOR TWO-USER FADING MULTIACCESS CHANNELS WITH DELAY CONSTRAINT. PSNR IN DB AND RATE IN MBPS.

Policy sum PSNR PSNR 1 PSNR 2 sum rate rate 1 rate 2
LQIHPR 80.3 40.5 39.8 0.39 0.24 0.15
WSRM 75.1 41.4 33.7 0.39 0.33 0.05

of the flexibility in assigning power and rate, resulting in a
capacity loss [2].

Now let us consider problem (7) with C = C
(
P̄

)
and wi =

1:2
maximize

r

∑I
i=1 Qi (ri)

subject to r ∈ C(P̄)
(9)

where the Q-R model is given in (6).
At the first sight this problem is similar to (8): finding an

operating point inside the capacity region to maximize the
weighted sum of video qualities. However, this problem is
essentially much harder due to the following reasons.

1) Problem (8) isolates the rate allocation problem from
power allocation. It is assumed that a feasible power
allocation scheme is chosen before studying the rate
allocation problem. Problem (9), however, is a joint
power and rate allocation one. Since the increase in
capacity solely comes from the ability to allocate power
dynamically [2], one cannot fix the power allocation any
more: every point in the boundary surface of C

(
P̄

)
is

associated with a different feasible power control policy.
2) The explicit characterization of C

(
P̄

)
is much more

complicated than Cg (h,P) or Cf (P). Since we are
mainly interested in the boundary surface, let us make
a comparison between the computation of boundary
surfaces of Cg (h,P) and C

(
P̄

)
. The boundary surface

of Cg (h,P) is a polyhedron, and thus several linear
equations are sufficient to represent it. The boundary
surface of C

(
P̄

)
, however, is a convex set, and for

every point on the boundary surface there are two integral
equations associated with it which have to be solved [2].

2As has been stated before, if wi �= 1 we can always incorporate them
into the Q-R model.

B. Boundary Surface of C
(
P̄

)
We will solve problem (9) by first modifying the solution

in [2], which was originally developed to characterize the
boundary surface of C

(
P̄

)
, and then proposing a “divide and

conquer” strategy. First of all, we qualitatively show where
the solution might be, and justify the optimality of successive
decoding.

Lemma 1: The solution to the optimization problem (9)
must lie at the boundary surface of the capacity region C

(
P̄

)
in which the rate and power have a one-to-one mapping

rπ(1) =
1
2

log
(

1 +
hπ(1)pπ(1)

N0

)

rπ(k) =
1
2

log

(
1 +

hπ(k)pπ(k)

N0 +
∑k−1

i=1 hπ(i)pπ(i)

)
, k = 2, · · · , I

(10)

where π is a permutation on {1, · · · , I}, which is determined
by {Qi(ri), i = 1, · · · , I}.

Proof: The first part is a direct result from Theorem 1.
According to [2, Lemma 3.10], the boundary surface of C

(
P̄

)
is the set of extreme points of Cf (P) ,P ∈ F . Since the
solution to problem (9) is at the boundary surface, it must be
a successive decoding solution.

Remark 1: This lemma helps eliminate one degree of free-
dom in the optimization problem by revealing that the optimal
solution (r∗,P∗) must satisfy certain one-to-one mapping.
However, the mapping itself depends on the Q-R model.

Remark 2: This lemma reveals an important difference
from the LQIHPR policy. Recall that LQIHPR requires the
system to operate in a time-sharing fashion. Equation (10),
however, says that in the dynamic resource allocation problem
the system is always working in a pure successive decoding
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fashion, i.e., time-sharing is not needed here. This is due to
the fact that the boundary surface of C

(
P̄

)
consists of pure

successive decoding points.

From Lemma 1 we only need to consider the boundary
surface of C

(
P̄

)
. Tse and Hanly provided a solution [2,

Theorem 3.16] to explicitly characterize the boundary surface
of C

(
P̄

)
. This solution is referred as the Tse-Hanly solution

in the sequel. It is interesting to note that although the purpose
of the Tse-Hanly solution is to explicitly characterize the
entire multiaccess capacity region C

(
P̄

)
, it turns out that this

coincides with solving the optimization problem

maximize
r

μr

subject to r ∈ C
(
P̄

) (11)

for all possible μ ∈ R
I
+. The key observation is that the

objective function in (11) is linear in rate r. We will develop
a modification to the Tse-Hanly solution and apply it to solve
our problem in the following.

C. A “Divide and Conquer” Solution

Now let us turn to problem (9). Since the Q-R model (6)
for each user is a line-segment one, by an appropriate
partitioning of the capacity region C

(
P̄

)
based on the length

of the rate interval for each line segment, we can divide
the original problem (9) into several parallel sub-problems,
in each of which the objective function reduces to a linear
combination of rate r, and thus Tse-Hanly solution can be
adopted to find the optimal solution for this sub-problem. To
be more specific, since user i, i = 1, · · · , I is associated with{
(λ(1)

i , Δ(1)
i ), · · · , (λ(Ni)

i , Δ(Ni)
i )

}
, we can partition the en-

tire rate of interest into I-dimensional rate hypercubes ΔI �{(
Δ(k1)

1 , Δ(k2)
2 , · · · , Δ(kI )

I

)
, ∀ki = 1, · · · , Ni, i = 1, · · · , I

}
,

and apply this partition to the capacity region
C

(
P̄

)
. There is also a set of slope vectors ΛI �{(

λ
(k1)
1 , λ

(k2)
2 , · · · , λ

(kI )
I

)
, ∀ki = 1, · · · , Ni, i = 1, · · · , I

}
,

each element in which corresponds to one hypercube in ΔI .
A geometric illustration of this idea for a two-user situation
is given in Fig. 4.

Let us temporarily assume that we know the subset ΔI
bs ⊂

ΔI which is the set of all the I-dimensional hypercubes that
fully covers the boundary surface of C

(
P̄

)
. We name them

“active hypercubes” since they are the ones that will be used
in applying Tse-Hanly solution. In the two-user example as in
Fig. 4, this is the set of all the gray rectangles. The cardinality
of ΔI

bs is assumed to be M , and we represent this set as

ΔI
bs =

{(
Δ(k1,1)

bs , · · · , Δ(kI,1)
bs

)
, · · · ,(

Δ(k1,M )
bs , · · · , Δ(kI,M )

bs

) }

�
{
Δ1

bs, · · · ,ΔM
bs

}

with the corresponding slope set

ΛI
bs =

{(
λ

(k1,1)
bs , · · · , λ

(kI,1)
bs

)
, · · · ,(

λ
(k1,M )
bs , · · · , λ

(kI,M )
bs

) }

�
{

λ1
bs, · · · , λM

bs

}
.

For each element λi
bs ∈ ΛI

bs, i = 1, · · · , M , the objective
function in problem (9) becomes λi

bsr + qi where qi is a
constant, and we solve the convex optimization problem

maximize
r

λi
bsr + qi

subject to r ∈ C
(
P̄

)
r ∈ ΔI

bs

(12)

in the following way. We first relax the problem to

maximize
r

λi
bsr + qi

subject to r ∈ C
(
P̄

)
.

(13)

This is problem (11) with μ = λi
bs and a constant difference

in the objective function, and thus Tse-Hanly solution can be
applied to obtain the solution, which we denote as ri

TH . Then,
we need to make a binary decision on ri

TH : if ri
TH ∈ Δi

bs,
ri
TH is the optimal solution to problem (12); otherwise the

solution to problem (12) is at the intersection of the boundary
of Δi

bs and the boundary surface of C
(
P̄

)
. Again the corre-

sponding rates can be calculated by Tse-Hanly solution and
we can obtain the optimal solution to problem (12) by simply
comparing the objective function values of these intersection
points and choosing the maximum one.

We denote the resulting optimal solution set R∗
cand �

{r∗i , i = 1, · · · , M} where r∗i is the solution to problem (12)
with λi

bs. Then, if we are able to determine that the optimal
solution to problem (9) must be in the set R∗

cand, we can
claim we have solved problem (9). The optimality, existence
and uniqueness of such solution is justified in Theorem 3.

Theorem 3: Given ΔI
bs and ΛI

bs, for each element λi
bs ∈

ΛI
bs, i = 1, · · · , M , we solve problem (12), and denote the

resulting solution set as R∗
cand = {r∗i , i = 1, · · · , M}. Then

a) problem (9) with Qi(ri) defined in (6) has one and only
one solution;

b) the solution r∗ to problem (9) is in R∗
cand.

Furthermore, r∗ = argmaxr∈R∗
cand

∑I
i=1 Qi(ri).

Proof: See Appendix B.
This method can be further improved in terms of efficiency.

From the proof of Theorem 3 we know that if ri
TH ∈ Δi

bs,
ri
TH is not only the optimal solution to problem (12), but

also the optimal solution to problem (9). Thus, an improved
scheme to obtain the optimal solution is to first check whether
ri
TH ∈ Δi

bs for all possible i’s. Only if such ri
TH does not

exist for any i ∈ {1, · · · , M} do we proceed to calculate
the intersection points. This will improve the efficiency by
avoiding unnecessary calculation of the intersection points.

D. Low-complexity Construction of the Candidate Subset

Now let us go back to the problem of how to obtain the
subset ΔI

bs. One natural method is to first obtain the entire
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Fig. 4. Geometric illustrations of how to partition the capacity region C (
P̄

)
and where the optimal solution to problem (9) may be for a two-user case.

The gray area is ΔI
bs, and the set of all gray and shadowed rectangles is ΔI

cand. The optimal solution has two possible formats: (a) r∗ = r∗i ∈ Δi, or (b)
no r∗i satisfies r∗i ∈ Δi, and the optimal solution is at one intersection of C (

P̄
)

and Δi.

boundary surface using Tse-Hanly solution, and then get ΔI
bs

by checking which rate hypercube each point on the boundary
surface is in. Unfortunately this method is infeasible, since
there are infinitely many points on the boundary surface. To
avoid this problem and obtain a low-complexity solution, we
propose to use the candidate set ΔI

cand, which is defined as
the set of all rate hypercubes that can possibly have boundary
surface points in them. In other words, rate hypercubes that are
not in ΔI

cand will never contain any boundary surface points.
We then show using ΔI

cand instead of ΔI
bs in the previous

algorithm will not change the result, and provide a simple
method to construct ΔI

cand.

Since ΔI
cand has all possible rate hypercubes, the optimal

solution is certainly also included, and the previous algorithm
can be used to find this solution. We only need to show
that in the complement set Δ̄I

bs � ΔI
cand\ΔI

bs, there is no
such r∗i which is both the solution to problem (11) with the
corresponding μ = λ̄

i
bs and satisfying r∗i ∈ Δ̄

i
bs. This is easy:

assume r∗i is a solution problem (11), and then according
to Tse and Hanly’s result, this r∗i must be in the boundary
surface. Thus it can not be in Δ̄i

bs, which does not have any
boundary surface points.

We now show that knowing all the N = I! extreme
points is sufficient to construct ΔI

cand. Denote the set of rate
hypercubes containing the N extreme points as

ΔI
ep =

{(
Δ(k1,1)

ep , · · · , Δ(kI,1)
ep

)
, · · · ,(

Δ(k1,N )
ep , · · · , Δ(kI,N )

ep

)}

�
{
Δ1

ep, · · · ,ΔN
ep

}

with the corresponding slope set

ΛI
ep =

{(
λ

(k1,1)
ep , · · · , λ

(kI,1)
ep

)
, · · · ,(

λ
(k1,N )
ep , · · · , λ

(kI,N )
ep

)}

�
{

λ1
ep, · · · , λN

ep

}
.

We further argue that ΔI
cand can be3

ΔI
cand =

{
(Δ1, · · · , ΔI) |Δi ∈

{
Δ(1)

i , · · · , Δ(Ni)
i

}
,

Δi ≥ min{Δ(ki,1)
ep , · · · , Δ(ki,N )

ep },

Δi ≤ max{Δ(ki,1)
ep , · · · , Δ(ki,N )

ep }, ∀i

}
.

(14)
In fact, the rate set (14) is the minimum I-dimensional
hypercube {(Δ1, · · · , ΔI)} that covers all the N extreme
points. Since the boundary surface is strictly within this I-
dimensional hypercube, we reach the desired conclusion. For
the two-user example shown in Fig. 4, ΔI

cand is the set of all
gray and shadowed rectangles.

This method of using ΔI
cand has an advantage of low

complexity: only N = I! extreme points need to be calculated,
and these points have standard “water-filling” solutions. We do
not need to calculate any other points on the boundary surface.
It has been proved in [2] that the extreme points are achieved
by water-filling combined with successive decoding. In the
two-user example in Fig. 4, RA is achieved by first letting
user 2 water-fill over the noise level, and then letting user 1

3Mathematically, we denote set A to be smaller than set B in the following
sense: a ≤ b, ∀a ∈ A,∀b ∈ B. Similarly, we define the minimum of N sets
Amin � min{A1, · · · , AN} in the sense that a ≤ b, ∀a ∈ Amin, ∀b ∈
Ai, Ai �= Amin . These definitions are valid only if the inequality relationship
exists.
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water-fill over the sum of noise and interference from user 2.
RB is achieved in the reversed order.

Algorithm 3 I-User Optimal Resource Allocation Algorithm
for Line-segment Q-R Models

Input: Average power constraint P̄; User i’s Q-R model (6)
with

{
λ

(1)
i , · · · , λ

(Ni)
i

}
and

{
Δ(1)

i , · · · , Δ(Ni)
i

}
, i =

1, · · · , I .
Initialization: Calculate the I! extreme points of C

(
P̄

)
using

the standard water-filling solution; Construct ΔI
cand =

{Δi|i = 1, · · · , M} from (14) with ΛI
cand = {λi|i =

1, · · · , M}; flag = 0.
Repeat:

for i = 1 to M do
Solve problem (13) by using Tse-Hanly solution with
λi ∈ ΛI

cand, and denote as (r∗i ,P∗
i ).

if r∗i ∈ Δi then
r∗ = r∗i , P∗ = P∗

i , flag = 1, return.
end if

end for
if flag == 0 then

R∗
cand = {}, P∗

cand = {}.
for i = 1 to M do

Calculate the intersections of C
(
P̄

)
and Δi using Tse-

Hanly solution and denote as Rint.
Choose r∗int such that r∗int =
argmaxr∈Rint

∑I
i=1 Qi(ri).

Add r∗int to R∗
cand, add the corresponding P∗

int to
P∗

cand.
end for
r∗ = argmaxr∈R∗

cand

∑I
i=1 Qi(ri), and choose the corre-

sponding P∗ from P∗
cand.

end if
Return: (r∗,P∗)

Now we are in the position of giving the complete solution
to problem (9) in Algorithm 3. The complexity of this algo-
rithm heavily depends on how many hypercubes the boundary
of the capacity region dominates. This in turn depends on
how granular the line-segment model is. The more granular
the line-segment model, the higher the complexity. In fact, the
complexity of Algorithm 3 is random, since at any iteration
the optimal point could be found and thus the algorithm could
have ended. Generally, the complexity of Algorithm 3 is too
high to be implementable. However, we want to emphasize
that Algorithm 3 is not developed as an operational solution.
Instead it is developed only to calculate the theoretical limit
of achievable video quality in wireless multiaccess fading
channels. We do not intend to recommend it as a practical
algorithm to implement. Due to this reason we do not provide
numerical examples in this section.

One limitation of Algorithm 3 is that it is not universal
for other Q-R models. In this case, one has to resort to
the convex optimization theory to obtain numerical solutions
[13]. However, since line-segment function is always a good
approximation to a continuous function, our algorithm can
provide the solution which is very close to the global optimum.

V. CONCLUSION

This paper shows how resource allocation should be done
by a joint consideration of APP-MAC-PHY layers. We demon-
strate that the previously known optimal solution becomes
suboptimal when APP layer video characteristics are con-
sidered. We derive optimal resource allocation policies for
different fading channel models from an information-theoretic
perspective, and develop efficient algorithms to implement
them. Simulation results are shown to support our argument.

Our proposed solution can be viewed as a general theoretic
framework for resource allocation. The key ingredient of this
framework is to study the resource allocation by jointly con-
sidering the upper-layer utility functions (represented by the
video quality-rate models) and the lower-layer information-
theoretic capacity constraints (represented by the multiaccess
capacity region). For example, the solutions developed in this
paper, although derived using video quality as the APP layer
target, can be extended to other APP layer utility models as
long as they have similar properties as the video Q-R models,
i.e., any utility-rate function that is monotonically increasing
and concave. At the same time, other multi-user capacity
regions can be considered in this general framework, e.g., a
downlink environment [3].

APPENDIX A
PROOF OF THEOREM 2

Denote the solution obtained from Algorithm 2 as r∗ =
(r1, · · · , rI), and the value of objective function as Q∗

1. Let
us assume that the optimal solution to problem (8) is t∗ =
(t1, · · · , tI) 	= r∗, and the optimal value of objective function
is Q∗

2 where Q∗
2 > Q∗

1. Without loss of generality, we assume
r1 > t1, and denote δ1 = r1 − t1. We define ΔFi (ra, rb) �∫ rb

ra
fi(z)dz.

According to Theorem 1, the optimal solution t∗ satisfies∑I
i=1 ti = CMAX({1, · · · , I}). The solution resulting from

Algorithm 2 also satisfies
∑I

i=1 ri = CMAX({1, · · · , I}) =∑I
i=1 ti. Thus

∑I
i=2 ti =

∑I
i=2 ri + δ1, and we can denote

ti = ri + αiδ1, i = 2, · · · , I,
∑I

i=2 αi = 1. We can then
connect Q∗

1 with Q∗
2 by

Q∗
2 = Q∗

1 + ΔF1 (r1, r1 − δ1) +
I∑

i=2

ΔFi (ri, ri + αiδi)

> Q∗
1. (15)

This suggests

ΔF1 (r1, r1 − δ1) +
I∑

i=2

ΔFi (ri, ri + αiδi) > 0. (16)

However, inequality (16) contradicts with the principle
of Algorithm 2. Rates are always allocated to users for
which they lead to the maximum area increase in Algo-
rithm 2. Inequality (16), on the other hand, says that giv-
ing a total rate δ1 to user 2, · · · , I will result in larger
area

∑I
i=2 ΔFi (ri, ri + αiδi) than giving it to user 1:∑I

i=2 ΔFi (ri, ri + αiδi) > −F1 (r1, r1 − δ1). From this con-
tradiction, we conclude that such t∗ = (t1, · · · , tI) 	= r∗ with
Q∗

2 > Q∗
1 does not exist, and r∗ = (r1, · · · , rI) is the optimal

solution.
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APPENDIX B
PROOF OF THEOREM 3

The existence of the optimal solution comes directly from
that the set C

(
P̄

)
is closed and bounded, and Q(r) is finite

for any finite r. To prove the uniqueness of the solution, we
first prove the following lemma:

Lemma 2: Define f (r) =
∑I

i=1 Qi (ri) where Qi (ri) is
defined in (6). If f (r) = f (s) = C and r 	= s where C is a
constant, then f (αr + (1 − α) s) ≥ C for any 0 ≤ α ≤ 1.

Proof: For any 0 ≤ α ≤ 1, assume r ∈(
Δ(k1)

1 , · · · , Δ(kI )
I

)
, s ∈

(
Δ(l1)

1 , · · · , Δ(lI )
I

)
and αr +

(1 − α) s ∈
(
Δ(h1)

1 , · · · , Δ(hI )
I

)
. We have Δ(ki)

1 ≤ Δ(hi)
1 ≤

Δ(li)
1 , ∀i = 1, · · · , I . Since Qi(ri) is a concave function, we

have Qi (αri + (1 − α)si) ≥ αQi (ri) + (1−α)Qi (si) , ri ∈
Δ(ki)

1 , si ∈ Δ(ki)
1 , αri + (1 − α)si ∈ Δ(hi)

1 . Thus

f (αr + (1 − α) s) =
I∑

i=1

Qi (αri + (1 − α)si)

≥
I∑

i=1

αQi (ri) + (1 − α)Qi (si)

= C

Now with the help of Lemma 2, we can prove there is
only one solution to problem (9). Let us assume there are two
optimal solutions, r1 and r2, such that Q∗ = f (r1) = f (r2).
Consider αr1 + (1−α)r2, due to the convexity of C

(
P̄

)
we

have αr1 + (1 − α)r2 ∈ C
(
P̄

)
. From Lemma 2 we know

f (αr1 + (1 − α)r2) ≥ Q∗. This contradicts the fact that r1

and r2 are optimal solutions, because there is no linear part
at the boundary surface of C

(
P̄

)
[2]. We thus conclude that

there is only one optimal solution.
To prove that the optimal solution must be in R∗

cand,
we use the fact that any locally optimal solution is also
globally optimal for convex optimization problems [13]. From
Theorem 1, the optimal solution must be at the boundary
surface, and thus must be in ΔI

bs. Let us further assume
that the optimal solution to problem (9) satisfies r∗ ∈ Δi

bs.
In this hypercube, the original problem (9) is equivalent to
problem (12). According to the definition of R∗

cand, the locally
optimal solution to problem (9) in Δi

bs is r∗i ∈ R∗
cand. Since

locally optimal solution is also globally optimal, we conclude
that r∗ = r∗i ∈ R∗

cand.
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